Numerical simulation of non-uniform processes
- Kurt FRISCHMUTH
- Kategoria: Transport i spedycja
In logistics as well as in other branches of science, engineering or transport, one frequently observes nonhomogeneous spatial or temporal patterns. It is a challenge for mathematical modeling and computer simulation to preserve such non-uniform behavior. Typically, the type of solutions to model equations depends on certain characteristic parameters. It is important to determine critical values of those.
SYMULACJA NUMERYCZNA PROCESÓW NIEJEDNORODNYCH
W logistyce, transporcie jak również innych dziedzinach naukowych, częstokroć występują zjawiska niejednorodne w czasie lub w przestrzeni. Poprawne odzwierciedlenie takiego zachowania stanowi wezwanie dla modelowania matematycznego i dla symulacji komputerowych. Typową okolicznością jest, że rozwiązania odpowiednich równań modelowych zależą od charakterystycznych parametrów. Istotne znacznenie ma obliczenie wartości krytycznych takich parametrów.
1. INTRODUCTION
Many processes in nature, engineering or economy can be easily described by means of differential equations, and often it is not very difficult to find certain special solutions to these model equations.
In particular, if intuition suggests e.g. symmetries or invariances of the studied phenomenon, numerical calculations of that type of solutions may be fast and effective.
However, in many applications, solutions turn out to be non-unique, and in certain ranges of parameters non-trivial behavior has to be studied.
Let us consider some examples. We start with a dynamical system, described by an ordinary differential equation. The equations of motion of a rigid wheelset on a straight track under a constant driving moment admit a solution with vanishing lateral motion and constant speed along the middle line between the rails. However, if a certain critical speed is exceeded, the uniform solution becomes unstable and so-called hunting occurs, cf. [7, 2, 4]. (...)
W logistyce, transporcie jak również innych dziedzinach naukowych, częstokroć występują zjawiska niejednorodne w czasie lub w przestrzeni. Poprawne odzwierciedlenie takiego zachowania stanowi wezwanie dla modelowania matematycznego i dla symulacji komputerowych. Typową okolicznością jest, że rozwiązania odpowiednich równań modelowych zależą od charakterystycznych parametrów. Istotne znacznenie ma obliczenie wartości krytycznych takich parametrów.
1. INTRODUCTION
Many processes in nature, engineering or economy can be easily described by means of differential equations, and often it is not very difficult to find certain special solutions to these model equations.
In particular, if intuition suggests e.g. symmetries or invariances of the studied phenomenon, numerical calculations of that type of solutions may be fast and effective.
However, in many applications, solutions turn out to be non-unique, and in certain ranges of parameters non-trivial behavior has to be studied.
Let us consider some examples. We start with a dynamical system, described by an ordinary differential equation. The equations of motion of a rigid wheelset on a straight track under a constant driving moment admit a solution with vanishing lateral motion and constant speed along the middle line between the rails. However, if a certain critical speed is exceeded, the uniform solution becomes unstable and so-called hunting occurs, cf. [7, 2, 4]. (...)
Artykuł zawiera 10968 znaków.
Źródło: Czasopismo Logistyka
Zaloguj się by skomentować