Optymalizuj logistykę w firmie: Aktualne trendy i sprawdzone rozwiązania dla Twojego biznesu

Zaloguj się

Dachser tworzy centrum kompetencyjne nauki o danych i uczenia maszynowego

W powołanym przez Dachser nowym wewnętrznym Centrum Kompetencji Data Science & Machine Learning od początku czerwca br. operator logistyczny gromadzi wiedzę specjalistyczną z prowadzonych projektów badawczych i wdrażanych innowacji dotyczących sztucznej inteligencji, uczenia maszynowego i nauki o danych.

Sztuczna inteligencja (ang. artificial intelligence, AI) sprawdziła się w różnego rodzaju projektach i zastosowaniach w sieci Dachser przynosząc wiele korzyści i przyczyniając się do zwiększenia wydajności.

- W najbliższych latach znaczenie sztucznej inteligencji, uczenia maszynowego i nauk o danych dla transportu, logistyki i zarządzania łańcuchem dostaw będzie nadal rosło. Dlatego pracujemy nad tym, aby umocnić swoją wiedzę w tej ważnej dziedzinie i rozszerzyć swoje możliwości w zakresie wdrażania oraz obsługi aplikacji uczenia maszynowego - powiedział Stefan Hohm, Chief Development Officer (CDO) w Dachser. W tym celu powstało Centrum Kompetencji Data Science & Machine Learning Dachser, którego zadaniem jest integracja i transfer wiedzy wewnątrz organizacji.

Dachser codziennie wytwarza duże ilości danych, które stanowią podstawę do rozwoju i wykorzystania technologii AI.

- W przyszłości będziemy jeszcze lepiej wykorzystywać dane: pomogą nam one znaleźć i wdrożyć nowe rozwiązania w różnych obszarach naszej działalności - zapowiedział Florian Zizler, Team Leader Competence Center Data Science & Machine Learning w Dachser.

Sztuczna inteligencja wspiera analizy prognostyczne
Jednym z przykładów wykorzystania kompetencji nowo utworzonego centrum w praktyce jest stworzony przez Dachser Enterprise Lab model prognostyczny wykorzystujący algorytmy uczenia maszynowego do przewidywania liczby przesyłek przychodzących dla danego oddziału z wyprzedzeniem do 25 tygodni.

- Nasze dane historyczne sięgają aż 2011 roku. Koncentrujemy się na tych, dotyczących przesyłek. Uzupełniamy tę bazę o dodatkowe informacje, takie jak święta państwowe czy wakacje. Dzięki temu model jest w stanie rozpoznać wzorce sezonowe, które są tak ważne w transporcie drogowym. Żeby jeszcze lepiej przewidywać trendy, dodaliśmy również szeroki zakres wskaźników ekonomicznych - powiedział Florian Zizler.

Dzięki temu Dachser może zapewnić pracownikom swoich oddziałów cenne wsparcie przy podejmowaniu decyzji związanych z planowaniem zdolności operacyjnych w szczytach sezonów i zapewnieniem płynności funkcjonowania terminalu przeładunkowego.

- Wyzwaniem dla prognoz bazujących na wartościach historycznych było poradzenie sobie z wahaniami wolumenu oraz pandemią koronawirusa. Jednak jesteśmy optymistami i spodziewamy się, że wkrótce nasze prognozy powrócą do swojej zwyczajnej, wysokiej jakości - dodał Florian Zizler.

Źródło: Dachser

O sztucznej inteligencji czytaj także:
- Sztuczna inteligencja wspomoże transport kolejowy
- GEFCO testuje system zautomatyzowanej kontroli pojazdów ProovStation
- Sztuczna inteligencja zarządza już ponad 40 fabrykami w Polsce
- Nowy IGV sterowany inteligencją roju

Ostatnio zmieniany w środa, 11 sierpień 2021 12:50
Zaloguj się by skomentować