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OPTIMAL CONTROL FOR A PLANTS CONSISTING OF TWO MASS ES
AND CONNECTED WITH A NON-LINEAR SPRING

Problem of optimal system controlling a motion bé fplant consisting of two-
masses connected with a non-linear spring is camsil in the paper. For example
such plants can be motorcars with trailer or dumhbrde pulling by ship.
The irregular motion of elements of such plantdugrices negative on consume
energy. In addition, because of safety, the spdedhation should be limited.
As a criterion of quality we take the energy of #meor signals.Till now the two
mass problem (benchmark problem) was considered liftgar cases only.
The novelty of our work is generalisation of thimhdem (using the describing
function method) for non-linear cases. The, Ebntrol theory (robust control)
is firstly adapted to cope with non-linear plankligh effectiveness of the optimal
controller has been confirmed by computer simutatioMATLAB.

OPTYMALNE STEROWANIE OBIEKTAMI SKEADAJ ACYMI SI E Z DWU MAS
| POt ACZONYMI NIELINIOW A SPREZYNA

W pracy rozwzany jest uklad sterygy, optymalizujcy ruch obiektu skiadagego
si¢ z dwodch elementéw o znacznych masaclkycpohych nieliniow sprezyng.
Obiektami takimi ¢ np. samochody z przyczepami lub barki wodngni¢te przez
statki. Nieregularnéci ruchu elementéw takich obiektow powedujize straty
energii w nagpdzie i, ze wzghbu na bezpieczstwo, zmuszgj do ograniczania
predkasci ruchu, co wydia czas trwania transportu. Kryterium jad@ jest zaycie
energii okrglone sygnalem bbu. Dla znalezienia optymalnego regulatora
przeprowadzono harmonicztinearyzacg uktadu i dla zlinearyzowanego réwnania
zastosowano metody optymalizacji bazejna metodach przestrzeni Banacha H

i H, (robust control). Wysoka skutecZfioregulatora wyznaczonego opisan
metod; potwierdzona zostala symulacjkomputerow. Dodatkowym efektem
zastosowanego sterowania jest zapewnienie stafilnétadu.

! Maritime University of Szczecin, POLAND, ul. Wahlh@&brego 1-2, Szczecin 70-500; Phone: 603922948
e-mail: a.lozowicki@am.szczecin.pl , d.lozowicka@aozecin.pl

2 Cracow University of Technology, ul. Skatbkiego 10 m.121, 30-071 Krakéw, POLAN®mail:
stupnick@poczta.onet.pl



1822 Adam LOZOWICKI, Teresa tOZOWICKA-STUPNICKA, Bata tOZOWICKA

1. INTRODUCTION

The problem of,, optimal control for the plant consisting from tmwassesn,, m, and
connectedwith a non-linear spring is considered in the papgéll now the two mass
problem (benchmark problem) was considered foralineases only. The novelty of our
work is a generalization of this problem (using thescribing function method) for non-
linear cases. ThH,, control theory is firstly adapted to cope with rlavear plants. Up to
this time the theorem is given assuming that thesickered non-linear system is optimal in
the sense offl,, norm criterion if corresponding harmonically limzad system is optimal
in the same sense. This fact enables one, byatidiz of describing function method, to
bring the non-linear two-mass dynamical model te timear approximation form and
thereby to apply..-type procedures.

Let us consider a non-linear dynamical model aSign 1 given by the following set of
equations:

My X" (1) + f(xa(t) —xa(1)) = u(®) 1)
M X" (1) —F(xa(t) —%x(1)) = w(D), @)

where xl(t) andxz(t) are the positions of masses, andmz; the spring joining two masses
is described by a non-linear operatfo(for example(x) = k)

X1
| X
f(x2 -%1)
u w
— 3 m _/\/\/\ m, —

TITTTT I I T AT T 7T

Figure 1. The exemplary plant in the non-lineantiemark problem

The signalu(t) is a control force applied to mass and the plant is disturbed t).
We put w(t) = 0 and introduce the notations :

Vi =X, Vo= Xp- %o, V=[vy, Vz]T,

The equations (1) + (2) take the form:
" 1
vy (1) = — (v, (1) 3
m

vyt =- LM £ )+ ) 4)
mym, my

In the paper the problem of two-masses (non-lineamchmark problem) tracking is
tackled via H-optimal control theory methods. Since the two-mdgsamical model is
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non-linear the theory is firstly adapted (using dlescribing function method) to cope with
non-linear plants. The method of analysis of thalinear state feedback  Hoptimal
control was considered by A.J. van der SchaftT@p form of non-linear functiofy in the
considered plant, enable however to use the désgribnction method in simply way.

2. ADAPTATION OF H,, CONTROL THEORY TO THE CONSIDERED
NON-LINEAR PROBLEM
Let us consider a tracking control system

u=Cy(r) —Cy(r)
_ ©)
v="P(u)
where P is a non-linear dynamical operation, representiregplant (equations (3), (4)),
which maps a set of signals with bounded energytfar[0,) into itself (Banach space
2 2
L - L) and fulfills conditionv(* ) =0 for u(- ) = 0. The main problem is that the signal

v is to track a reference sigmal The plant inputi is generated by passingndv through
linear controllers(:1 and C, respectively (as in Fig. 2).

w r h u \
— W Cl‘

U
v

+

C»

A

Fig. 2. Tracking system

It is postulated that is not a known fixed signal but may be modeledeasnging to the
class

R(W,m) ={r : r =W(w) for somewlL,, ”’WL <m<oo} . (6)

If the constantn is not determined exactly then the notatik{iV) will be used.

The Laplace's transformations of signals, h, r will be denoted by(s), v(s), h(s), r(s)
respectively. For the complex-value functios) we use another, Hardy spadg besides
L2 LetH, is a set of linear operatiofisfor which there exist bounded in sgg& 0 transfer
functions F(s). This set create a Banach spaét, Hardy space). The subset bff,
consisting of rational functions with real coeféiots will be denoted bRH,. We can
formulate the following statement: F [OH., andx 0OH,, thenF(x) 0OH,, moreover

Il = sup{ IF(Ik - xOHz, [Klb< 1 }.
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Since the tracking error signal is equalrite-{) the cost function is
Il = (IIr-v [ + llpu [b*)", Q)

wherep is a non-negative weighting factor. Thus the tiaglcriterion takes here the form

2ol s ) ®

GG | rORW, m)

The minimization of the cost function (7) is eques to minimization of energy
consumption in non-linear tracking control systém (

For simplicity of our consideration let us assuatefirst thatC, = C, . This does not
change the generality of the method because welvaoseW ( and the class of signals
R(W) ) that W(C,) = W;(C,). For example we can pW = W;(C,(C,™)). We can transform
formally the equations (5) to the form

IF-vik = IS ((C2 " + P)()Ik 9)
bk = 11(C + P)(N)k (10)

In connection with the operatioR (mapping the spack? into itself) the describing
function can be précised as follows [5]:

Let v(t) be a response of a system described by the aperBt to the signal
X(t) = N sin(«t), a quotient of the symbolic value of the firstinanic of the output signal
v(t) to the amplitude of the input is called the di#sog function and is denoted by

g}v(t)sin( wt)dt + j

]'v(t)cos (wt)dt
P(jw,N)=—2° .

il

(11)
N

Let us consider now a system which consistdwaf non-linear elements given by
describing functionsP;(jw,N) andP,(jw,N) and linearelement with transfer functiol(s)

—X> El(ja)N})—» Kiw [»|[PjeN)l—>

Fig. 3. Example of non-linear system

The resulting describing functid?(jw,N) can be expressed by formula:
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P(wX) = Py(jaX[P1jw,X)[K(j))[) P1(joo.X) K(jod) .
Let P(s) be a describing function of some non-linear ofi@naP. The approximate

equations, which correspond to the equations @) lthe form

u=C,r +C.v
{ 1 2 (12)

v = Pu

System (12) can be treated as a system of linffarehtial equations.
The equivalent standard problermHg control theory (see [2],[3]), is defined b

r Gll GlZ
= cK=[CG Cof; Gi= 13
y {v} [ 1 2] {621 GZJ (13)

sl el

wrll] e?

Since the methods of optimization ik, space (13) refer to linear systems only the
theorem which enables us to use these methodptimipation of a non-linear tracking
systems is presented below. Let us assume thdinéze operatiorC; is given by

where

t
Co(v(t)) = [ v(t ~7)dc(r), (14)
0

wherec(1) is a bounded variation function or an operatioreg by the transfer function
Cy(s). The equations (5) can be written in the form

v(t) =tP(U(t))

u(t) = h(t) - [v(t - 7)dc(r) (15)
0

Theorem 1 (compare to [8]). Let an operatidh mapping the Banach spacé linto
itself has a uniformly continuous and bounded d#ive. If for a controllelC,” 0 RH,, the
expression
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. . -1
1 deP(i@) _ 1 deP(jo)

re |
Gl damuje) " Cy(ja)  Amu(ja)
“’jude i, amp(iw) 1 amP(e) | | 4

mCz(J'w) deu(jw)  Cyjw)  dmu(jw)

1= sup@ !
? qAjed

attains a finite minimum and if for thew from this expression the number
sup}Cg(jnw)| is sufficiently small then the control system dédsed by equations (5)
nzl

with the controllerC,” is optimal in the sense of criterion (8). Moreguender the same
assumptions the controll€;" is optimal also for the approximate system (12) .

Conclusion. Let the assumptions of theorem 1 are fulfilled. tife controller
K" =[C,,C,] is optimal in the sense of criterion (8) for thpproximate system (12) then
it is also optimal in the sense this criterion ttie non-linear system (5).

Let the describing functior® of some non-linear pla® be a rational function with real
coefficients and analytic in the open right haline res>0 (P ORH, ). The system
(12) can be transformed to the form of model matgiisee Fig. 4) , wherE (s) 0 RH,, .

LE

z
: !

Tauiifl

In the case of stable describing function we eseive (compare (13)) that

v

Fig. 4. Model-matching

K=-Q(l -Gz Q)_l =-(1 -Gy Q)_lQ ) T1=G11, T2=G12, T3=Gyn (17)
In view of this fact the criterion equivalent ®) (s

15 [T, -T.QTy - (18)

= min
QURH,
For the two-mass control, the following problem dansolved too: compute an upper
boundy for /," such thaty—/," is less than a pre-specified tolerance; and tmenpute
a QO RH, satisfying

M -T2 QTsll. <. (19)
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Of course, sucl) may not be optimal, but it can be calculated wismy pre-assumed
accuracy. Note that the considered methods cageheralized to include disturbances
rejection problems [2],[ 3 ].

3. TWO-MASS MATHEMATICAL MODEL
Now we take under consideration the two-mass dycammodel given by the
equations (3), (4).

0

f0q) = -f(m) + F(m)(x + m)

m

f(x) = f(m) + f(m)(x - m

Fig. 5. Graph of function f(x)

We assume that the non-linear function (descriltiregaction of spring between two mass)
has the form

n n

Zkakmk_l(x— m) + Zakmk for x<m

k=1 k=1

f(x)= Jayx+apqx +agC +..+ ak><|><1k_1 for —-m<x<m (20)

n n
3 kam<x-m) - Yamk  for  x<-m
k=1 k=1

Let us now find the describing function of thereént given by equations (4) and (20). For
this purpose we assume that output signal haothe f

Vo (t) =V sinut
So we get

m+m

u(t) = —mla)zvz sinwt +
m

(agv, sinat + a V3 sinwt +...+ a, V& sinwtsinawt] k_l)
Note that the following equation can be used

uio) =2 WP ™ (jwvy).
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Based on the above given definition of the deseglfunction (11) we obtain

_ L 32
(Ez(jw,V2)) topMim(14) ;]Zal(nh+ M) for k=1

_ N2
(Ez(ja),vz)) 1_3nmymy(j@)” +3nay(my +my) | Bapvp(m+mp) o),
1.57m, 15m,

(Ez(jw V2))_1 _ 12mmymy(jw)? +12maq (my + my) +
’ 67]'1']2
+32a2v2(ml+6”b)+9”f’s”2:€é for k=3
T,

(Ez(ja),vz))_l _ (60may +160mayvy)(my +my) |
3077”]2

+ 45magmyVv2 +128a,myv3 + 60mmymy (jw)?

for k=4
30mm,
Then the first harmonic of input signal has therfor
-1
u(t) = usinawt = P2(ja),v2)) (vo sinwt)
i.e.
2,. -1
u=P(jwvy)| Vvs.
Now we can write
P(jwu)= L2 forl

2(mmy(ja)? + ay (my +my))
P?(ja,u) = 15nm, Bumymy(je)? +3nay (M + M) + Sayv,(m+m))*  fork=2  (21)

P*(jeau) =67m, (L2immy(je)? +1 28, (m +my) +32,V,(m +m,) +978,mp2) ™ for k=3
P (jwu)=— 2 foe=4
P(jowu) B+Clia)

Where A=30mm, ;

B =(60ma, + 1608, v,)(m+ m)+ 451 & m 4+ 1283 miv
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C=60m m,
The function v,(u,w) in above formulas can be generated by the intpfignctions
respectively

U=y, STMIMy(§@)? + 2y (my +my)) + 835y (my +mp) for k = 2
2 15nmy,
U= 2 Q2nmymy(jw)? +12nay(m, + mp) +
My
+32mayvy (Mo +my) + 9na3m2v§) fok =3 (22)
- 2
u= 30mm, (60na1(m1+ m2) +160a, \@( m + "é) +

+ 45na3mzv§ +128a4m2v§’ + 60nmlmz(ja))2) fork=4

It should be noticed that the describing functiB(jsv,vy), for k > 1, are not real-rational. In
theH,, control theory it is assumed that plant must becdeed by function fronRH,,. For

this reason, the functioﬁz(jw,u) will be approximated by real-rational functi®f(jw,u).
From many known methods of interpolation , the rodtlof Lagrange's multipliers, used
here, is presented bellow. Let pointgj(wy) i = 1, 2,...n fulfill the equations (22). We

define a function

P2 = Ty ©700)0=0).. 0= 0 )0 0ur). 0= 00) ’s
()= 2 Vo — o) — o) (o~ ) —0res) o~ ) D

So, the polynomialP%(w) approximate the functionv,(wu). SubstitutingP?,(w) into
equation (21) instead ®f(w,u) we get the describing functid, (juu) from R H..

Example: Let us now find the describing functioR$, (jwu), P', (jou) from RH,, of the
elements given by the equations (4) and (3) whHaebn-linear function has the form

—m4+4m3(x+ m) for X<-m
f(x) =1 [xx® for —-m<x<m
m?* + 4m3(x— m) for X=m

From (21) fork = 4 we have
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. 15n
P2(jeu) = T2 (24)
30mmymp(j@)” +64mpv;
wherev,(w,u) is generated by the implicit function
64m, Vs — 30mm mw? y — 151 m & 0 (25)

Puttingmy = 1,my= 2,u = 2 into (25) we get
v, (0,2) =-1.1016, v, (0.5,2) =-1.0232,
v, (1,2) =-0.7661, v, (2,2) =-0.2493,
v, (4,2)=-0.0625, v, (8,2) =-0.0156,
v, (16,2)=-0.0039, v, (32,2)=-0.0010,
v, (100,2)=-0.0001 .

Denoting by d,u) the denominator of (24) we can write

d(0,2)=-171.1125, d(0.5,2)= -184.2410,
d(1,2)= -246.0483, d(2,2)= -755.9655,
d(4,2) -3.0160e+003, d(8,2)=-1.2064e+004,

d(16,2)=-4.8255e+004,  d(32,2)=-1.9302e+005

The describing functioR?, (jo,u) approximates the function (24) (by (23)) takesfibrm
P2 = -30m(0.2927j0)® +197.0221jw)? + 72.182] jw) + 1711136 * (26)

The roots of the denominator &f5(jeu) are equal to -6.7275, -0.0018+0.0091j and
-0.0018-0.0091j. For the equation (3) the descgliimctionP", (jw,u) takes the form

P3(j0,2) = -60n((jw)? (02927 jo)® +197.02jw)? + 721828 jw) +1711136 * (27)

4. COMPUTATIONAL ALGORITHM
Now getting back to the tracking system (5), theatipns (12) for the approximate plant
take the form

u= Cy(ry,rz) —Cy(vi, Vo) (28)
vi = Ph(jou)u (29)
v, = P4 (jwu)u (30)

whereP’, andP?, are given by (26) and (27).

If we substitute
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£ f—=Vvi

0 —pu

Q=[Q. Q. Q]
100 -P}
T,=T,=|0 1 0 ; T,=|-P2
000 —pl

then the system (28), (29), (30) can be transfdriteeits equivalent model matching form
(compare equations (17)). Using the algorithmssimiving the model matching problem
[2] we can find the optimal functio@ and then the corresponding controller

K*=[C,, C,]. So, based on Theorem 1 the controler[C, C,] is optimal also for the
tracking system (5). The algorithm for the optirahtrollerQ” in the sense of criterion
(18), (19) has the following form:

Step 1.ComputeY and [Y||.., whereY:=(I-U; Ji )T1 andT,=U;U, is inner-outer
factorization,U; is inner,Ji =U; (-9).

Step 2.Find an upper bound; for a, where
a=inf{y: |ML<V, [|I4l.<1, dist(R, RH.,)<1},

Y,=spectral factor of*- Y Y,

TaYs = Vo Vs is coprime factorization/, co-outer V. co-inner,
Z:= U; TuYo ™" (I-Vg Ve,

Z.~co-spectral factor of-ZZ , R=Z¢;* U; Ty Yo Vg .

Step 3.Select a trial value forin the interval (M|, o4].

Step 4.ComputeZ and ||

Step 5.1f ||Z]}.. < 1, continue; if not, increaseand return to Step 4.

Step 6.ComputeR and g ||. Then [z || < 1 if a <y, so increase or decrease the value of
y accordingly and return to Step 3. When a suffittyeaccurate upper bound far
is obtained, continue.

Step 7.Find a matrixX in R H,, such that R-X], <1.

Step 8.SolveX = Z.,* U, Ve for Q in R He,.

5. CONCLUSIONS

The presented theorem enables to apply the strdlar methods to optimization of
feedback control systems with non-linear plants. liAear, approximate two-mass
dynamical model was obtained with the aid of désuy function method (harmonic
linearization). The performed MATLAB simulations idomed the consistency between
the given non-linear ship dynamics and its lingapraximation. The presented algorithm
make it possible to find a structure of the optimahtroller for the tracking a preset two-
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mass trajectory. Note that the considered methags lbe generalized to include
disturbances rejection problems [2], [3].
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