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APPLICATION OF THE THEORY OF HYPERELASTIC-PLASTIC M ATERIALS
IN THE TEST OF STATIC STRETCHING OF THE ROD WITH CI RCULAR
CROSSECTION

The issue of necking in the stretched elementsidslyvdebated in the literature.

In these works the results of experimental studiémlytical solutions and the FEM
simulations in the framework of the theory of ladgformation theory can be found, cf.
e.g.[6]. Here the effective solutions of boundamlue problems are obtained with
application of finite element method (FEM) and ARQWS software. It is worth noting that
reasonable modeling of rod stretching experimeritame of the small deformation theory
is not possible. The main goal of this study isdmpare the FEM solutions obtained for
two different large deformation theories for elagplastic materials, i.e. the theoretical
formulation proposed in [5] and the theory implertezhin ABAQUS/Standard[1].

ZASTOSOWANIE TEORII HIPERSPR EZYSTO-PLASTYCZNO SCI
W STATYCZNEJ PROBIE ROZC| AGANIA PRETA O PRZEKROJU KOLOWYM

Zagadnienie powstawania przetgnia zwanego szyjkw elementach rozgjanych jest
szeroko dyskutowane w literaturze doiypej teorii plastyczni. W pracach tych
zamieszczono wyniki batladaswiadczalnych, rozwizania analityczne oraz symulacje
MES, por. np.[6]. W tej pracy do rozyiania zagadnienia brzegowego efektywnie stosuje
sie meto@ elementéw skixzonych (MES) i program ABAQUS. Warto podlkéejuz na
wskpie, ze racjonalne modelowanie tego eksperymentu w ram@&chmii sprzysto-
plastycznéci matych deformacji nie jest miwe. Celem tej pracy jest poréwnanie
rozwigzair MES zadania rozggania prta przy zastosowaniu dwoch zrych teorii
sprezysto-plastyczngwi dla duwych deformaciji, tzn. sformulowania teoretycznego
zaproponowanego w [5] oraz teorii zaprogramowanejystemie ABAQUS/Standard[1].

1. INTRODUCTION

The issue of necking in the stretched elementsdslw debated in the literature, see eg
[4], [5]. In these works the results of experiméstadies, analytical solutions and the FEM
simulations in the framework of the theory of ladgformation theory can be found. Also
in the monograph of Simo and Hughes [6] the resafitsxperimental and numerical tests
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with application of the theory of elastic-plastarde deformation materials are presented.
These tests are carried out taking into accouninfience of the strain rate or as the static
test. For effective solution of the boundary vabueblem or initial boundary value problem
the finite element method (FEM) is applied. It isritn noting that the rational modeling of
this experiment in the theory of small elastic-ptadeformation is not possible.

The purpose of this study is to compare the saigtiof the task of rod stretching using
two different formulations of theory for large defmation for elastic-plastic materials, i.e.
the results obtained for large deformation theoith ayperelastic-plastic model (cf. [5])
and the theory for relatively large deformationiklde in ABAQUS / Standard [1]. The
hyperelastic-plastic constitutive model of metalsesented below is incorporated in
ABAQUS/ Standard, by UMAT Subroutine written in FODRAN language.

Numerical solutions of static task of rod stretchare carried out for different FEM
discretizations of the body. In the static task #ssumption of axial symmetry and the
symmetry with respect to the plane perpendiculghéoaxis of the bar and dividing it into
two equal parts are incorporated. However, suchragsons may causa priori, that we
are not able to find some solutions that are ptessiithin the theory of large deformation,
see the comments in the monograph [2]. Assumptiaeformation symmetry in the static
task are allowed and can be interpreted as the dddkperfection shape and material
inhomogeneities.

2. CONSTITUTIVE MODEL OF HYPERELASTIC-PLASTIC MATER IAL
Constitutive model was formulated in frame of largeformation theory with

consequent multiplicative decomposition of gradiehtleformation tensor into two parts:

an elastic and plastic one denoted respectivelyrasand F,. Additionally each of

deformation tensors was decomposed with applicatiggolar decomposition theorem onto
part describing stretching (right and left stretehsor denoted respectively &k and V)

and part connected with the rotation of the mat@mént (R ). It was assumed that plastic
deformation has no volumetric change, what is ageable assumption in case of metallic
materials and givesletF, = detC, =...=detV, =1. The elastic properties of materials are

described with application of hyperelastic modeltioé MCMH type, cf. [2,3]. In this
model the stored energy function, which is a paaéfor the stress tensor can be written in
the following form:

w=2(1,-3)+a(3,) 1)

where: 1,- shear modulus in reference configuration,

— _ 2

I ¢- an invariant equal tdg = J, 3trU?,
J.- an invariant equal td, = detF,,

a(J,) - describes the volumetric changes.

The functionﬁ(Je) can be expressed in the following manner:
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~ _ Ko _a\2 2
a(3.)==2[ (372 +(in3)°] . )2
where: K;- volumetric stiffness modulus in reference confagion.

The plastic properties are taken into account bstydating associative plasticity with
yield condition analogical to the well-known Hulbldises condition with isotropic
hardening:

f(r.0) =] - 2(a) =0, @

where: t - Kirchhoff stress tensor,
4] - the norm of deviatoric part of Kirchhoff stressisor,

k(a) - hardening function.

The hardening function in (3) can be expressetarfallowing manner:
k(@)= oy + Aa +(A, - AJi-e). (4)

where: oy - yield stress in the uniaxial test,
A Ay, A, ,0 - hardening parameters.

In (3) T4 is a deviatoric part of the Kirchhoff stress temsand function k(a),
describes an isotropic nonlinear strain hardenitfwpliior calibrated from simple stretching
test. In the variabler the history of the plastic deformation (vﬁp) can be taken into
account.

3. A COMPARISON OF FEM SIMULATION RESULTS FOR TWO DIFFERENT

FORMULATIONS OF PLASTICITY WITH EXPERIMENTAL DATA

As it was mentioned in the introduction, the statid stretching test was analyzed in [5]
and in the monograph [6]. Here the same geometendl material data are taken into
account, in order to compare obtained resultsitSes assumed that the rod with circular
cross-section and radius= 6.413[mm] is | =53.334mm] long.

The initial elastic properties are characterizedshgar modulusi; =80.1938 [GPa]
and volumetric stiffness modulus , =164.206§GPa|, what rewritten into Young modulus
and Poisson ratio giveg =2069 [GPa] andv = 029. In (4) the following data are
describing the strain hardening processA :0.12921{GPe] , A :0.715[GPa] ,

A,=0.45|GPq , 0y, =0.45|GPd andd =16.93, cf. fig. 1.
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Fig.l.Geométry of the rod, symmetry
assumptions and FEM model

The stretching of the rod was carried
out with application of displacement
boundary conditions. At the edge DC
the displacement in y direction is
blocked, while at the edge AB the
displacement in the x direction is
blocked and displacement in y direction
is set to 7[mm]. At the edge AD the
boundary conditions result from axial
symmetry, and for BC edge the zero
stress boundary conditions are assumed.

The task was solved for constitutive
model presented in paragraph 2 and
incorporated into the ABAQUS/
Standard, via UMAT Subroutine written
in FORTRAN language.

The same task was solved with
application of plasticity with additive
decomposition of logarithmic strain
tensor. In that formulation the vyield
condition is written in terms of
deviatoric part of Cauchy stress tensor,
and the nonlinear isotropic hardening
was modeled by piecewise-linear
function. So from theoretical point of
view that constitutive model is
substantially  different  from  the
hyperelastic-plastic model. Nonetheless

the results of the analysis should be consistertialise of the fact that elastic deformations
and local material particle rotation in analyzesktavere relatively small. Furthermore the
differences between components of the Cauchy anchKoff stress tensors shouldn’t be
significantly different because under assumptioouatincompressibility of the plastic part
of deformation the relationship hold = J.6 . Additionally we know that initial shear

modulus is about two orders of magnitude highentbhear yield, what is typical for

metals.
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Fig.2. Approximation of functimk(a) = ap(gp) with

linear segments

The properties of isotropic
and nonlinear plastic hardening
were assumed according to the
graph presented in fig.2 as an
linear approximation in a
hundred equal intervals. It means
that there is the following
relationship k(a) Dap(sp),

t
20 [y
where £, = I\/;”ep (/7)||d/7
0
(equivalent plastic strain ).
The FEM mesh is the same
for both tasks and consists of

10x50=500 CAX4 type elements
with linear shape functions. The

mesh has higher density near the symmetry lindjgcl. The task was solved with use of
automatic step division procedure and 130 iteratimere needed to obtain solution with

assumed accuracy.

r
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Fig.3. Deformed mesh
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. Ratio of current radius in DC section and initraldius as a
function of Al/l, - results comparison, cf. also[6]

The results of the rod deformation are presentdid)iB. In turn in fig. 4 the comparison
of FEM results for both formulations and experinatigiata are shown. In fig.3, 6 and 7 the
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results are presented at the end of active prdeasout an elastic unloading process). In
fig.5 the contour graph of equivalent Mises stredsepresented at the end of loading step
(a) and after unloading (b). Differences betweea tbsults obtained by two different
formulations of elasto-plasticity are, from therstpoint of conformity with experimental
data irrelevant. Just as in the work [5] we havecg&ed the influence of the number of
mesh elements on the results showing that it itigiblp. The same tasks were solved with
the denser mesh of 20x100= 2000 elements. Obtaewdts are practically identical with
an accuracy of at least two significant digits.

a) | b)

S, Mises
(Avg: 75%)

S, Mises
(Avg: 75%)

0.13755
0.07860

Fig.5. Example of FEM results (ABAQUS)- contourgrs: a) equivalent Mises stress at
the end of loading step, b) equivalent Mises staftes unloading

Exemplary results are presented as contour plot&gare 5-7. Significant deformations
and concentration of plastic strain occurs natyiallthe neck, see fig.3 and 6. The fields of
displacement norm, stress and strain componentsiging/ heterogeneous on the length of
the sample as well as on its diameter. The highiésttive stresses are located in the neck
of the sample and are about 0.96 [GPa] and dectsafsemly in the direction of the upper
edge, see fig.5. The equivalent plastic strain idatshe neck are about four orders of
magnitude smaller, than in the neck, cf. fig.6ae Tdrgest plastic deformation occur in the
neck and along the axis of the rod, and in thel tstrain, crucial contribution have the
plastic strain. It may be noted that extreme elastiain are of at least three orders of
magnitude smaller than plastic strains. The distiilm of elastic strain on the height and
radius of the sample is more heterogeneous tharfdhalastic strain. It is easy to check
that in the plastic range the assumption of incasgibility is met with a high accuracy.
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a) b)

U, Magnitude
PEEQ 7.00000
(Avg: 75%) 6.53345
1.91525 6.06690
1.78759 5.60034
1.65992 5.13379
153226 4.66724
1.40460 420069
1.27693 3.73414
1.14927 3.26758
1.02161 2.80103
0.89394 233448
0.76628 1.86793
0.63862 1.40138
0.51095 0.93483
0.38329 0.46827
0.25563 0.00172

0.12796

0.00030

Fig.6. Example of FEM results (ABAQUS)- contourgrst a) equivalent plastic strain, b)
norm of displacement at the end of loading step

a) b)
EE, EE12 PE, PEI2
(Avg: 15%) (Avg: 75%)
200582 1.87440
0.00038 174914
0.00492 1387
00446 1.49861
0.00400 157334
0.00354 135388
0.00308 1.12281
nn0zel 0.99754
0.00215 0.87228
0.00169 0.74701
000123 0.62175
D000 0.49648
0.00031 e
00001 024595
-0.00061 o430
-0.00107 Joea2

Fig.7. Exarﬁple of FEM results (ABAQUS)- contour s a) shearing component of
elastic strain, b) shearing component of plastiaistat the end of loading step
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4. CONCLUSIONS

The formulation presented in the work [5] and inmpémted by author should be
regarded as consistent, cf. [3], while the stashdarmulation implemented in ABAQUS
and based on an additive decomposition of logaiitstrain measure can not be used for
significantly large deformation of the body. Thenual [1] state limitation onto the elastic
part of strain (up to about 5%). Plastic deformatmd rotation of particles of the body are
not at all limited. Based on the elaboration présein [3], it can be concluded that in the
case of deformation in which there are significimatl rotations of particles of the body,
part of the deformation gradient describing theatioh should be limited. Another very
important issue in this implementation is the amsteethe question whether the elastic
behavior of the material model is close to lindbwe are dealing with non-linear elasticity
that the results will certainly be irrational. Suamy calculation example shows, however,
that in many applications where local rotationsarall and the behavior of the material to
yield is almost linear ABAQUS program with its stland formulation can be reasonably
used.
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