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ICT NETWORK TRAFFIC BASED ON A SIMPLE FRACTAL STRUCTURE

The results of measurements of ICT network traffeveals the presence
of fractal structures and long-range dependenceufate modeling of the offered traffic
load is the first step in optimizing resource adition algorithms and QoS requirements.
In this article the fractal structure is represedtdy the simple random midpoint
displacement method which approximates fractionawBian motion (fBm), theoretical
process that exhibits aforementioned features, resgnted. Apparently, this algorithm
generates inaccurate approximation of fBm for thghlr degree of self-similarity.
To improve this simple and fast algorithm, some iffcadions based on variance analysis
are proposed. The results of simulation and statibtesting with comparison to the real-
time measurements in computer network are presamtddliscussed.

NATEZENIE RUCHU W SIECIACH TELEINFORMATYCZNYCH
OPARTE NA PROSTEJ STRUKTURZE FRAKTALNEJ

Wyniki pomiaréw natenia ruchu w sieciach teleinformatycznych ujawniapecndé
struktur fraktalnych oraz zataasci diugoterminowych. Dokladne modelowanie qbenia
stanowi zatem pierwszy krok w optymalizowaniu wgaeji zasobow sieciowych oraz
pomaga spehdi wymagania QoS (Quality of Service). W artykulauldtrre fraktalng
otrzymano za pomagcmetody losowego przemieszczesriadka odcinka, dzki czemu
otrzymano przyhienie procesu utamkowego ruchu Browna stapoego teoretyczn
podstaw w analizie struktur fraktalnych. Jakesbkazuje, zaprezentowana metoda niezbyt
doktadnie przyblia ten teoretyczny proces, szczegoélnie dlazsmgch stopni
samopodobiéstwa. Aby ulepszZytq prosy i szyblg meto& zaproponowano pewne
modyfikacje bazyfe na analizie wariancji. Zaprezentowano wyniki glaoji oraz
testowanie statystyczne w zestawieniu porégmuje do rzeczywistego ruchu
zarejestrowanego w sieci teleinformatyczne;.
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1. INTRODUCTION
1.1. Fractal structurein the|CT network traffic and fractional Brownian motion

Packet arrivals in ICT networks was often assumdakt Poisson process because it has
attractive theoretical properties [1,2]. Studiesvgb that local-area and wide-area network
traffic is much better modeled using self-similaongesses, which have much different
theoretical properties than Poisson process [2(Eif]1). A statistical analysis of Ethernet
traffic reveals the presence of “burstiness” acesgde range of time scales which is best
explained in terms of self-similarity, i.e., traffpatterns show structural similarities across
a wide range of time scales.

Below, on Fig.1 there is a sample traffic pattama different time scales. Picture show
packet arrivals of incoming traffic captured on thain firewall of the West Pomeranian
University of Technology as well as Poisson mo#éd can see that patterns for real traffic
are far more “bursty” than for Poisson model, esdbcas the time scale increases. The
degree of fractal level (self-similarity) both faeal-time traffic measurements and
presented model will be considered further.
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Fig. 1. Packet traffic (left) and Poisson modegfri) patterns
in real ICT network across different time scales

As it was mentioned earlier, fractional Browniantion (fBm) is the theoretic exactly
self-similar process with stationary increments had the following properties [4,6]:

e invariance in distribution — statistical self-sianity
Y(at):aHY(t) , t,alR,a>0 (1)
* has the stationary Gaussian increments with theiggedistribution (= 0):

2
fG(x) ! exr{— X 2} (2)
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* has the covariance function defined as:
2
CofY(9),Y (1) = Ky (s) =%(|t|2H |y -9 ) . t,sOR 3)

e foroc>0 and05<H <1

Elv2@))=o?> (4)

The index H is called the Hurst exponent and is the measuréh@fdegree of self-
similarity (05< H <1). When H =05, the fBm is the usual Brownian motion with the
following relationship:

CovY(3),Y(t)) = K g5(s,t) = min(s,t) (5)

1.2. Simplefractal structure

Simple fractal structure represented by the randddpoint displacement algorithm is
best described in [7]. This very simple and powledigorithm is used for example in
fractal interpolating or in modeling computer lacalses.

We look for the real values oKX (t) for O<st<1. First, let X(0) =0 and X (1) is the

Gaussian random number. Then we caIcuI)it(%) as the mean oX(0) and X(1). In
the next step we add the correcti®p which is the Gaussian random numbBy. should
be multiplied by the scale parameter as in (6)tHe next step we reduced the scale
parameter by2H and divide the time segmev[m;l] into [O;}/zj and l}é,l] So, X(%)
equals }é(x (O)+X(}é)) plus the random correctiorD,. For X(%) we have:
X(%):}/Z(X(}é)+X(1))+D2. The procedure repeats until we get satisfactevgll of
division.

The algorithm produce®’ real values ofY(t), where J is the level of division of time
segment [0;1] . Scale parameters for correction3;,D,,....D; can be obtained by
calculating the variance, i.e.:

Var|X(%)|=Var| % (X ) + X )+ Dy
_52H-2
Var(Dl) = 02% (6)

So, the correction fob; is V1-22H-2p~H For{Dj}, j=12,...,.J we have
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1-p2H-2
T ()

Var(Dj):J NEL

2. SIMULATION AND PROPOSED IMPROVEMENT

2.1. Smulation results

Assuming g =1 we expect to get the approximation of fBm whicls hlae standard
Gaussian distributioN (0.1) for different H . Because of time of computation we take 3000
paths of N =30 different H values. Thus we neelfl =100 different standard Gaussian
random sequences, each consiste@ofsamples. We take into consideratiba 9, 10, 11
that corresponds tb= 512, 1024, 2048 samples per each random sequénge check
variances of the increment process for ddabf M generated path, we can see that for the

higher values of (above approx. 0.7) variances monotony decreds@ssato 0 Fig.2).
This phenomenon causes that we do not get stamdaddm Gaussian numbers for higher

values ofH.
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Fig. 2. Variances of 5 sample sequences for diftdrevalues

2.2. Improvement

Since variances of generated sequences using abentoned algorithm behave quite
regular, we can try to make additional correctiom fenerated values approximating

R (H,m):Var[X (m)(H)] by the function that best fits tBy (H ,m) for all m=12,...M
and depends on H and on one extra parametecsdyF,(H,cy) ). The correction:

XM (H) =X M (H)F,(H,cp) 0° @)
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should eliminate this unwanted behavior of variaWe test 3 different functions:

(g =2 ©)
1-05°

fz(H,c):%@irctg{ctéH —105_2ﬂ (10)

f3(H,c) :tgh{c[éH _10.5—2H (1)

In order to findc parameter we use mean-square error (MSE) techrméguere have to
solve the following equations:

N-1 c c _ Cy _ C _ c
Z[Varn_l—(Hn) H(Hn) (n(H,,) (- 05°) O.E; n(05) - (H.,) qzo 12)
1-05° (1- 05°)

n=0

2,
N 1[ { [E 1 J“ 7| H,-05
Var, ——@rct —-2|||B >=0 (23)
= H,—-05 { EE 1 H
1+|cll———-2
H,-05

N-1 _ _ 2 _
Var, —tgh/ c 2-2MHq 1-tgh/c 2-2MH, 2H, -2 =0 (14)
=~ H,-05 H,-05 H,-05

n

Tab. 1. Results for estimating ¢ parameter in fiomst (9), (10) and (11)

Meanc value MearMSE Coefficient of variation
J=9,10,11 J=9 [J=10]J=11| J=9 |J=10|J=11
20
f, b 0.007 | 0.013 | 0.009 | 0.265 | 0.348 | 0.294
Eil 15—@/6/6_
eSS
Cf [ -
fo| o ™ 0.033| 0.038| 0.033 0.33 0.496 0.373
3 erenet
ge S o 7]
-
s o 0.066| 0.061| 0.048 0.28D 0.338 0.3p2
J




3964 Przemystaw WLODARSKI

0 20 40 60 80 100
m

Fig. 3. Mean-square error for m-th random sequence

Looking at fig. 3, MSEy, k=123 denotes the mean-square error of fitting

fr(H,cy) into R, (H,m) for all m=12,....M .In the highlighted region of Table 1 there

are the smallest values of mean MSE and coeffigi@ftvariation from the proposed
functions. In the next paragraph there are thelteestistatistical testing for the (9) function

which best fits to the changing variance)ofm)(H) .

3. STATISTICAL TESTING
3.1. Testing of the nor mality and variance

For normality testing the Kolmogorov’s test was disé compares both theoretical
(standard Gaussian) and empirical cumulative 8istion functions and verifies the
hypothesis | : F. = K against H : K. # F; [9]. The significance level is set t0=0.05 and
fig.4 shows values of test statistic above 0.8. Valusw/den 0.8 and 1 are marked with
“+”. Sequences that exceed 1 fail test and are etawith “o0”.
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Fig. 4. Kolmogorov’s tests for standard (left) antproved (right) RMD method (J=10)

For variance testing the F-Snedecor test was uRedults for eachd tested shows
increasing trend of failed test (tab. 2). This @mal phenomenon, because number of
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samples multiplies 2 in each step (512, 1024, 2a48)we can observe such tendency also
for samples taken from any random variable generato

Tab. 2. Random sequences that failed particulgs tegl seq.: 3000)

Algorithm Kolmogorov's tes F-Snedecor test
J=9 standard 614 (20.5 %) 941 (31.4 %)
(512) improved 0 (0 %) 6 (0.2 %)
J1=10 standard 674 (22.5 %) 972 (32.4 %)
(1024) improved 12 (0.4 %) 28 (0.9 %)
J=11 standard 726 (24.5 %) 1015 (33.8 %
(2048) improved 27 (0.9%) 62 (2.1 %)

3.2. Testing of the self-similar level

The standard and improved method have been testesklf-similarity. For testing the
following methods have been used [2], [10]: aggredavariance, index of dispersion for
counts and periodogram-based method. Fig. 5 showsample of the aggregated variance
method which compares data for real network traffieasured at the West Pomeranian
University of Technology and data for improved neetlgenerator for H=0.806 (estimated
value for the real traffic). Dashed line corresporid the non-self-similar process (i.e.
Poisson).

As it turns out, the Hurst parameter estimationrBordom sequences generated using
standard random midpoint displacement method icthxdahe same like for random
sequences of improved algorithm - curves for eatimation method overlap.
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Fig. 5. Hurst parameter estimation (H — desired stysparameter) for 3 methods:
Hlv - aggregated variance, Hidc - IDC, Hp- periodam-based method
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4. CONCLUSIONS

Method presented in this article that was usedetzegate approximate fBm is fast and
easy to implement. The only drawback is that wendb get Gaussian distribution with
desiredo parameter for higher values df (especially greater than approx. 0.7). We could
fix this inconvenience by the additional correctipmoposed in section 2.2. Three
approximation functions have been tested. Firghem (9) had the minimal mean-square
error (tab. 1) and was chosen for the further aimlyStatistical testing shows a big
advantage of the improved method (tab. 2). Very fless than 1%) of sequences of thge
proposed method failed Kolmogorov's goodness-ofteists for standard normality
(comparing to the less than 25% value for standaethod). The advantage is also
confirmed by variance testing using F-Snedecoissiai{only 2.1 % versus 33.8 % for the
worst case whed=11). Furthermore, both standard and improved nistheveal self-
similar properties for variousl but the latter approximates fBm more accurately tus
can be used to model self-similar network traffiatthas Gaussian distribution.
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