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ICT NETWORK TRAFFIC BASED ON A SIMPLE FRACTAL STRUCTURE 
 

The results of measurements of ICT network traffic reveals the presence  
of fractal structures and long-range dependence. Accurate modeling of the offered traffic 
load is the first step in optimizing resource allocation algorithms and QoS requirements.  
In this article the fractal structure is represented by the simple random midpoint 
displacement method which approximates fractional Brownian motion (fBm), theoretical 
process that exhibits aforementioned features, is presented. Apparently, this algorithm 
generates inaccurate approximation of fBm for the higher degree of self-similarity.  
To improve this simple and fast algorithm, some modifications based on variance analysis 
are proposed. The results of simulation and statistical testing with comparison to the real-
time measurements in computer network are presented and discussed. 

 
 

NATĘśENIE RUCHU W SIECIACH TELEINFORMATYCZNYCH 
OPARTE NA PROSTEJ STRUKTURZE FRAKTALNEJ 

 
Wyniki pomiarów natęŜenia ruchu w sieciach teleinformatycznych ujawniają obecność 

struktur fraktalnych oraz zaleŜności długoterminowych. Dokładne modelowanie obciąŜenia 
stanowi zatem pierwszy krok w optymalizowaniu rezerwacji zasobów sieciowych oraz 
pomaga spełnić wymagania QoS (Quality of Service). W artykule strukturę fraktalną 
otrzymano za pomocą metody losowego przemieszczenia środka odcinka, dzięki czemu 
otrzymano przybliŜenie procesu ułamkowego ruchu Browna stanowiącego teoretyczną 
podstawę w analizie struktur fraktalnych. Jak się okazuje, zaprezentowana metoda niezbyt 
dokładnie przybliŜa ten teoretyczny proces, szczególnie dla wyŜszych stopni 
samopodobieństwa. Aby ulepszyć tą prostą i szybką metodę zaproponowano pewne 
modyfikacje bazujące na analizie wariancji. Zaprezentowano wyniki symulacji oraz 
testowanie statystyczne w zestawieniu porównując je do rzeczywistego ruchu 
zarejestrowanego w sieci teleinformatycznej. 
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1. INTRODUCTION 
 
1.1. Fractal structure in the ICT network traffic and fractional Brownian motion 
 

Packet arrivals in ICT networks was often assumed to be Poisson process because it has 
attractive theoretical properties [1,2]. Studies shows that local-area and wide-area network 
traffic is much better modeled using self-similar processes, which have much different 
theoretical properties than Poisson process [2,3,5] (Fig.1). A statistical analysis of Ethernet 
traffic reveals the presence of “burstiness” across a wide range of time scales which is best 
explained in terms of self-similarity, i.e., traffic patterns show structural similarities across 
a wide range of time scales. 

Below, on Fig.1 there is a sample traffic patterns in a different time scales. Picture show 
packet arrivals of incoming traffic captured on the main firewall of the West Pomeranian 
University of Technology as well as Poisson model. We can see that patterns for real traffic 
are far more “bursty” than for Poisson model, especially as the time scale increases. The 
degree of fractal level (self-similarity) both for real-time traffic measurements and 
presented model will be considered further. 
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Fig. 1. Packet traffic (left) and Poisson model (right) patterns  
in real ICT network across different time scales 
 
 

As it was mentioned earlier, fractional Brownian motion (fBm) is the theoretic exactly 
self-similar process with stationary increments and has the following properties [4,6]: 

 

• invariance in distribution – statistical self-similarity 

( ) ( )tYaatY H=  , Rat ∈, , 0>a         (1) 

• has the stationary Gaussian increments with the density distribution ( 0=µ ): 
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• has the covariance function defined as: 
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• for 0>σ  and 15.0 <≤ H  
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222 )( σ=             (4) 

 
The index H  is called the Hurst exponent and is the measure of the degree of self-
similarity ( 15.0 <≤ H ). When 5.0=H , the fBm is the usual Brownian motion with the 
following relationship: 

( ) ),min(),()(),( 5.0 tstsKtYsYCov ==         (5) 

 
 
1.2. Simple fractal structure 
 

Simple fractal structure represented by the random midpoint displacement algorithm is 
best described in [7]. This very simple and powerful algorithm is used for example in 
fractal interpolating or in modeling computer landscapes. 

We look for the real values of )(tX  for 10 ≤≤ t . First, let 0)0( =X  and )1(X  is the 

Gaussian random number. Then we calculate )( 2
1X  as the mean of )0(X  and )1(X . In 

the next step we add the correction 1D  which is the Gaussian random number. 1D  should 

be multiplied by the scale parameter as in (6). In the next step we reduced the scale 

parameter by H2  and divide the time segment [ ]1;0  into [ ]2
1;0  and [ ]1;2

1 . So, )( 4
1X  

equals ( ))()0( 2
1

2
1 XX +  plus the random correction 2D . For )( 4

3X  we have: 

22
1

2
1

4
3 ))1()(()( DXXX ++= . The procedure repeats until we get satisfactory level of 

division. 

The algorithm produces J2  real values of )(tY , where J  is the level of division of time 

segment [ ]1;0 . Scale parameters for corrections JDDD ,...,, 21  can be obtained by 

calculating the variance, i.e.: 
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So, the correction for 1D  is HH −− ⋅− 221 22 . For { }jD , Jj ,...,2,1=  we have 
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2. SIMULATION AND PROPOSED IMPROVEMENT 
 
2.1. Simulation results 
 

Assuming 1=σ  we expect to get the approximation of fBm which has the standard 
Gaussian distribution )1,0(N for different H . Because of time of computation we take 3000 

paths of 30=N  different H  values. Thus we need 100=M  different standard Gaussian 

random sequences, each consisted of J2  samples. We take into consideration J = 9, 10, 11 
that corresponds to I = 512, 1024, 2048 samples per each random sequence. If we check 
variances of the increment process for each H of  M generated path, we can see that for the 
higher values of H (above approx. 0.7) variances monotony decreases almost to 0 (Fig.2). 
This phenomenon causes that we do not get standard random Gaussian numbers for higher 
values of H. 
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Fig. 2. Variances of 5 sample sequences for different H values 
 
 
2.2. Improvement 
 

Since variances of generated sequences using above mentioned algorithm behave quite 
regular, we can try to make additional correction for generated values approximating 

( ) [ ])(, )( HXVarmHF m
V =  by the function that best fits to ( )mHFV ,  for all Mm ,...,2,1=  

and depends on H and on one extra parameter, say mc  ( ),( mp cHF ). The correction: 

5.0)()( ),()()( −⋅= mp
mm

p cHFHXHX          (8) 
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should eliminate this unwanted behavior of variance. We test 3 different functions: 
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In order to find c parameter we use mean-square error (MSE) technique, so we have to 
solve the following equations: 
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Tab. 1. Results for estimating c parameter in functions (9), (10) and (11) 

 
Mean c value Mean MSE Coefficient of variation 
J = 9,10,11 J = 9 J = 10 J = 11 J = 9 J = 10 J = 11 

1f  

9 10 11
0

5

10

15

20

cf1

cf2

cf3

J

 

 

0.007 0.013 0.009 0.265 0.348 0.294 

2f  0.033 0.038 0.033 0.331 0.456 0.373 

3f  0.066 0.061 0.048 0.280 0.358 0.302 
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Fig. 3. Mean-square error for m-th random sequence 
 

Looking at fig. 3, kmMSE , , 3,2,1=k  denotes the mean-square error of fitting 

),( mk cHf  into ),( mHFV  for all Mm ,...,2,1= .In the highlighted region of Table 1 there 

are the smallest values of mean MSE and coefficients of variation from the proposed 
functions. In the next paragraph there are the results of statistical testing for the (9) function 

which best fits to the changing variance of )()( HX m . 

 
 
3. STATISTICAL TESTING 
 
3.1. Testing of the normality and variance 
 

For normality testing the Kolmogorov’s test was used. It compares both theoretical 
(standard Gaussian) and empirical cumulative distribution functions and verifies the 
hypothesis H0 : Fe = Ft against H1 : Fe ≠ Ft [9]. The significance level is set to α=0.05 and 
fig.4 shows values of test statistic above 0.8. Values between 0.8 and 1 are marked with 
“+”. Sequences that exceed 1 fail test and are marked with “o”. 
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Fig. 4. Kolmogorov’s tests for standard (left) and improved (right) RMD method (J=10) 
 

For variance testing the F-Snedecor test was used. Results for each J tested shows 
increasing trend of failed test (tab. 2). This is normal phenomenon, because number of 
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samples multiplies 2 in each step (512, 1024, 2048) and we can observe such tendency also 
for samples taken from any random variable generator. 
 

Tab. 2. Random sequences that failed particular tests (all seq.: 3000) 

 Algorithm Kolmogorov’s test F-Snedecor test 

J = 9 
(512) 

standard 614 (20.5 %) 941 (31.4 %) 

improved 0 (0 %) 6 (0.2 %) 

J = 10 
(1024) 

standard 674 (22.5 %) 972 (32.4 %) 

improved 12 (0.4 %) 28 (0.9 %) 

J = 11 
(2048) 

standard 726 (24.5 %) 1015 (33.8 %) 

improved 27 (0.9%) 62 (2.1 %) 

 
 
3.2. Testing of the self-similar level 
 

The standard and improved method have been tested for self-similarity. For testing the 
following methods have been used [2], [10]: aggregated variance, index of dispersion for 
counts and periodogram-based method. Fig. 5 shows an example of the aggregated variance 
method which compares data for real network traffic measured at the West Pomeranian 
University of Technology and data for improved method generator for H=0.806 (estimated 
value for the real traffic). Dashed line corresponds to the non-self-similar process (i.e. 
Poisson). 

As it turns out, the Hurst parameter estimation for random sequences generated using 
standard random midpoint displacement method is exactly the same like for random 
sequences of improved algorithm - curves for each estimation method overlap. 
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Fig. 5. Hurst parameter estimation (H – desired Hurst parameter) for 3 methods: 

Hlv - aggregated variance, Hidc - IDC, Hp- periodogram-based method 
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4. CONCLUSIONS 
 

Method presented in this article that was used to generate approximate fBm is fast and 
easy to implement. The only drawback is that we do not get Gaussian distribution with 
desired σ parameter for higher values of H (especially greater than approx. 0.7). We could 
fix this inconvenience by the additional correction proposed in section 2.2. Three 
approximation functions have been tested. First of them (9) had the minimal mean-square 
error (tab. 1) and was chosen for the further analysis. Statistical testing shows a big 
advantage of the improved method (tab. 2). Very few (less than 1%) of sequences of thge 
proposed method failed Kolmogorov’s goodness-of-fit tests for standard normality 
(comparing to the less than 25% value for standard method). The advantage is also 
confirmed by variance testing using F-Snedecor statistic (only 2.1 % versus 33.8 % for the 
worst case when J=11). Furthermore, both standard and improved methods reveal self-
similar properties for various H but the latter approximates fBm more accurately and thus 
can be used to model self-similar network traffic that has Gaussian distribution. 
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